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Directed molecular transport in an oscillating channel with randomness
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Stability of directed transport and molecular separation in a symmetric channel is analyzed. The original
mechanism is based on harmonic spatial oscillations of the channel, under which the system exhibits multiple
regimes of a directed transport. The particles may be forced to move with different velocities and directions as
the amplitude and/or frequency of the oscillations are adjusted to a proper resonance. The advantage of this
mechanism in contrast to the ratchet systems is that the average particle velocity is larger than the velocity of
the growing of the width of the particle spatial distribution. We have studied the stability of the directed
transport with regard to random impacts to the channel parameters and oscillation frequency. Here we present
the results of the simulations which show that the ability of the combined longitudinally and transversally
vibrating randomized dynamic channel to perform directed molecular transport remains resilient to quite
intensive random channel structure fluctuations (50—60 %) and relatively strong random impacts to its oscil-

lations (15-20 %).

DOLI: 10.1103/PhysRevE.77.021114

I. INTRODUCTION

Biological movements display highly complex phenom-
ena involving biochemical and biophysical processes as well
as strongly nonlinear multibody dynamics with noise, dissi-
pation, self-organization, and self-regulation. An interdisci-
plinary research field has thus developed which attracts great
interest of many specialists involved in very different areas,
from biology to nanotribology. In recent years, there has
been an increasing interest in the studies of the pumping of
ions, molecules, and colloids through micro- and nanoscale
channels. These investigations have been motivated by a de-
sire to understand how biological molecular pumps operate
and to develop new strategies for the fabrication of synthetic
pumps [1-12].

Traditionally rigid channels without fluctuations of their
structure were considered, in which particles were moving in
spatially asymmetric ratchet potentials. Under nonequilib-
rium conditions these potentials can induce a directed drift,
additional to the ordinary diffusion [13-15]. However, the
dynamics of the channel proteins’ internal degrees of free-
dom are found to be important in many ways for an appear-
ance of net directional motion [16,17]. In paper [7] a pump-
ing mechanism driven by spatial fluctuations of a symmetric
channel was proposed. It has been shown that the pumping
and separation of particles can be achieved by correlated
oscillations of the channel walls in the lateral and normal
directions. The space oscillations modulate the particle-wall
interactions producing temporally asymmetric particle-
driving forces, so the total temporally spatial symmetry of
the system is broken to get directed transport.

The advantage of a pump based on such a mechanism is
that it dynamically determines the direction of motion and
does not require any spatial asymmetry of the channel. The
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transport velocity can also be varied within a wide range and
particles may separate according to their masses and/or in-
teraction with the channel walls. This system is closely re-
lated to other recently proposed molecular engines possess-
ing the general concept of dynamic control of motion for
which no static asymmetry is required [18-22,26,27]. Simi-
lar mechanism has also been published recently in [28,29],
where the wall effects in directed transport were studied in
the Fokker-Plank approach.

The characteristic property of the mechanism is that the
average particle velocity is larger than the velocity of the
growing of the width of the particle spatial distribution. This
allows an effective manipulation by the ensemble of particles
that is impossible in most ratchet systems where both veloci-
ties are of the same order. The model can be applied to real
biological systems with some limitations. In particular, the
motion of particles in the biological systems is strongly
damped. It was shown in [7] that the proposed mechanism of
pumping allows to produce directed motion also under over-
damped conditions. It was found that the maximal value of
current in the overdamped case is smaller than that for the
underdamped conditions, but the parametric resonances are
even more pronounced. The particles cannot be separated
according their masses however the separation is still pos-
sible, e.g., according to their friction coefficient and interac-
tion with the channel. The direction of the motion is dictated
by an asymmetry of the drive and does not depend of the
frequency and the amplitude of modulation.

The focus on particle motion investigations in a consider-
ably idealized case of the periodic channel with perfectly
harmonic dynamic oscillations is an important weakness of
previous work recorded in [7]. In biologically related flexible
systems, the transport should be induced by spatial fluctua-
tions of the nonideal channel walls with a complex molecular
structure. Randomness of the system was partially accounted
for in the form of thermal noise acting on the moving par-
ticles. It has been shown that thermal noise, depending on
the parameters of the system, can speed up or slow down the
directed transport. However, for numerical simplicity of the
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FIG. 1. Conceptual picture of directed transport in a symmetric
channel with different fractions of randomness: (a) A two-
dimensional snapshot of the embedded system obtained after ten
oscillations in a purely periodic channel with »=0, (b) the same
snapshot of the system with v=0.25, and (c) strongly randomized
channel with »=0.5. The instantaneous positions of the particles of
masses m=1 are shown by gray circles. Other parameter values are
the same as in [7]: o/ wg(m)=1, n/[mwy(m)]=0.89, kzT/Uy=0.02,
AB/1=1.3, AA/A(y=0.85, and N/A(=0.5.

model the randomness was completely ignored in the struc-
ture of the channel and in the fluctuations of the frequency
and amplitudes of its oscillations.

In the present paper the model has been made more real-
istic. In particular, we tested the effect of nonideality of the
channel and of its oscillations on the directed transport, prov-
ing that the phenomenon of directed transport in a fluctuating
channel holds under strong (1) random perturbations of the
channel’s periodic structure, (2) stochastic fluctuations of the
transversal channel wall vibrations, and (3) stochastic fluc-
tuations of the longitudinal vibrations.

To perform these studies, random impact to the channel
potential is generated numerically in the same manner as
applied in [23,24]. Henceforth, this potential is combined
with the periodic potential with changeable weight v. This
weight numerically describes a “fraction™ of the statistically
independent randomness contained in the total potential of
each wall. At each fraction v we repeat the same simulation
procedure as performed in [7]. We first fix a set of param-
eters corresponding to the well pronounced transport phe-
nomenon in the regular system, and then check the effect of
the randomness at various v. This allows the threshold v, to
be defined, up to which the effect of directed transport is
preserved.

II. MODEL

In order to investigate the effect of randomness and tem-
poral fluctuations on the characteristic properties of directed
motion, we use essentially the same model as in [7]. The
model incorporates a statistical ensemble of particles embed-
ded between two walls. The walls oscillate in both the nor-
mal and the lateral directions (see conceptual structure of the
model presented in Fig. 1). The dynamic behavior of each
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particle is described by the two-dimensional Langevin equa-
tion of motion [25]

mi=—nr—V.U(r) +1£(z). (1)

Here m and r=(x,y) are the mass and coordinate of a particle
and 7 is the friction coefficient. The effect of thermal motion
on the embedded particle is given by a random force f(r),
which is & correlated: (fi(2)f;(0))=279kzT(t)5;, where T is
the temperature and kp is the Boltzmann constant.

The interaction between the particle and the channel is
represented by the potential U(r). In contrast to the original
model, the potential U(r) now includes two parts: U(r)=(1
—v)U,(r)+vU,(r). The first term, U,(r), is regular and peri-
odic along the channel, U,(r)=U,(x)U(y,t), where

U,(x)=Uylcos{2nlx + B(r) )/} + o]. (2)

This potential represents the interaction with channel walls
and [ is the periodicity in x direction.

The second part of the potential, U,(r), is a numerically
generated random potential with scale-invariant structure. It
incorporates one of the important features of a realistic
physical and biological system where the mesoscopic struc-
ture of surface is of almost random scale-invariant character
and thereby cannot be characterized by a definite wave vec-
tor (or even few wave vectors as normally applied in simu-
lations of Brownian molecular engines). In numerical simu-
lation, U,(r) can be generated in the form [18,19] U,(r)
=U,(x)U(y,t), where

7
Up(x) = Uoj dg c(gq)cos(gx +0). (3)

q1

This follows the scale-invariant density of spectrum c¢(g)
=g, and characteristic cutoff wave vectors ¢, and ¢,. The
function {(x) represents a random phase that we assume to
be & correlated ({(q){(q'))=2m78(qg—q").

The coefficient v in the combination U(r)=(1-»)U,(r)
+vU,(r) defines a fraction of the random term U,(r) in the
total potential. When v— 0 the problem naturally degener-
ates into regularity. In the opposite limit v— 1, the channel
walls become completely random. In this context, our prob-
lem can be reduced to the determining of a critical fraction
value v=wv,; at which an effect of directed transport disap-
pears.

In numerical study, the integral in Eq. (3) transforms into
its discrete representation: [dq c(q) —Z=,. Here a discrete
step between the wave vectors Ag is determined by the
smallest vector ¢g; corresponding to an inverse maximal
length [, of the system which equals normally to its size
I max=L. Total number of terms N in the sum is given by
Niode s=92/q1=q>/Aq. However, for theoretical generality
and for accumulation of statistical data for the directed flux
of particles, it is important to be able to extend a channel to
“infinity” and continue the calculation procedure as long as
necessary. This does not cause any problem for the analyti-
cally defined periodic potential term. That said, it does mean
that numerically generated potential U,(r) should be extend-
able to an infinite run also. For this reason, instead of Eq. (3),
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one may use the following differential definition of random
potential:  JU,(x)/ dx=UpAxZ,q;c(q;)sin(gx+&), where j
=1,2,...,Npode 5 This procedure naturally extends U,(x) in-
finitely each time the x coordinate runs out of the instant
array bounds.

The possibility of regular channel width and lateral wall
position oscillations is taken into account by introducing a
time dependence into the width A(z), and the phase of the
potential B(1):

U(y,t) =[exp{[y — A())/12]/\} + exp{— [y + A(1)/2]/\}].
(4)

\ is the characteristic length of particle-wall interaction in
the y direction.

For the sake of simplicity, it was assumed in [7] that both
lateral and normal fluctuations follow harmonic law, B
=AB cos(wr) and A=Ay+AA cos(wr), with the same fre-
quency, w. The expansion of the channel is accompanied by
lateral displacement of the walls to the right, while the nar-
rowing of the channel occurs with the displacement to the
left and leads to a modulation of the particle-wall interaction:
the amplitude of the periodic potential U(x,y=const) reaches
a maximum at the minimum width of the channel and a
minimum at the channel’s maximum width. As a result, tem-
porally asymmetric forces acting on the particles are induced
by coupling of normal and lateral oscillations. The time av-
erage of the external force during this process is zero.

The above correlation seems to be very important for the
effect. In principle, one can expect a strong correlation be-
tween lateral and normal oscillations of the channel in bio-
logical (or artificial) systems which are controlled by exter-
nal signals. As was found in [7] the effect of directed
transport has a strongly pronounced resonant nature, which
can in principle completely disappear, even at extremely
small random impacts to the amplitude or frequency of the
harmonic oscillations. It is therefore important to check its
stability under such fluctuations.

To accomplish this, below we vary all the parameters in
the relations B=AB cos(wt) and A=Ay+AA cos(wr): AA
—AA+6A(t), AB— AB+68B(1), and w— w+ dw(t), with ran-
dom functions 8A(z), 6B(t), and Sw(t). The last type of fluc-
tuations makes the analytical relation A=Ay+AA cos(wt)
senseless, because it formally redefines the amplitude of the
oscillation not only for an instant in time, but for all the time
elapsed from the very beginning of the process. In this case
we have to redefine amplitude A using the same procedure
applied for the infinitely extendable random potential:
A/ dt=—AA sin(wt) with initial condition A(r=0)=A,,.

III. RESULTS AND DISCUSSION

At small relative fluctuations of the periodic potential v
and oscillations 6A(r), 6B(r), and Sw(t), physical behavior of
the system nearly coincides with that observed in [7]. One
can reproduce all typical examples of the symmetric channel
time evolution of an ensemble of noninteracting particles
driven by spatial oscillations. Following the same procedure
we take N=200 particles of different masses placed at the
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initial time around the potential minimum at the point r
=(0,0), and reproduce the main features of the model. In
particular it is found that (a) the spatial oscillations of the
channel lead to directional motion of the embedded particles
both to the right and to the left and (b) both direction and
velocity of motion depend not only on the driving parameters
o and AB but also on the particle masses.

The system also reproduces the main characteristic prop-
erty of this mechanism of directed motion: The average par-
ticle velocity is larger than the rate of growth of the particle
spatial distribution’s width. This is impossible in most
ratchet systems where both velocities are of the same order.
As usual, to characterize pumping we introduce an average
current as J:lim,_m(l/Nt)Ejilff))&j(t’)dt’. To extract nu-
merical information about directed transport through the
channel we also follow a time-dependent displacement aver-
aged over the ensemble of realizations, (x(z))
=(1/N)ZJL x,(1). At negligible v, 6A(z), 6B(r), and dw(r) the
dynamic behavior of the system can be characterized by the
same dimensionless parameters: kzT/U,, AB/l, AA/A, and
N Ag, w/ wy, 7/ (mw,), and wy=(27Uy/Im)"? as in the regu-
lar case. Further, it can be summarized in an analogous set of
dynamic scenarios, presented previously in a set of phase
diagrams in [7].

Now, to analyze the stability of these scenarios, one can
choose any point in the appropriate diagram and vary one of
the parameters v, 5A(z), 6B(f), and Sw(t) (or a few of them at
once). We examined different combinations of the param-
eters and found a general answer: The channel retains its
ability to perform direct transport up to relatively large fluc-
tuations of its structure and oscillation parameters. This abil-
ity has a threshold and remains almost unchangeable up to
critical values of each of the parameters v, dA(¢), 6B(t), and
dw(t). Upon reaching of any of the thresholds the effect of
directed motion abruptly disappears.

The complete space of all new and old parameters has too
many dimensions to be systematically accounted for by nu-
merical simulations. To illustrate the results we limit our-
selves by a particular combination of the parameters
w/wym)=1, n/[mwy(m)]=0.89, kgT/U,=0.02, AB/I=1.3,
AA/A(y=0.85, and N/A(=0.5, which corresponds to the best
driving ability of the channel at all zero corrections v, SA(r),
OB(t), and dw(r) — 0. Keeping all other parameters fixed, we
vary each fluctuation parameter independently and show the
results in Figs. 2-5.

The conceptual picture of directed transport in a symmet-
ric channel with different fractions of randomness is pre-
sented in Figs. 1(a)-1(c). Subplot (a) shows a two-
dimensional snapshot of a purely periodic channel »=0 for
comparison. The instantaneous positions of the embedded
particles of masses m=1 after ten periods of oscillation are
depicted by gray circles. The same snapshot of the system
with »=0.25 is shown in subplot (b). Subplot (c) presents a
strongly randomized channel with »=0.5, where the periodic
portion becomes almost invisible.

Figures 2(a) and 2(b) presents dependence of the
ensemble- and time-averaged displacement, Ax=(x)—x|_,
after 40 oscillations [subplot (a)] and standard deviation S,

= {(x—(x))?) [subplot (b)] on fraction v, which characterizes
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FIG. 2. Dependence of the ensemble- and time-averaged dis-
placement Ax=(x)—x|,_o after (a) 40 oscillations and (b) standard
deviation sz\,<(x—(x>)2) on fraction v, which characterizes net
drift and dispersion of instantaneous particle positions, respectively.
The results for Ax and S, are normalized to their values Ax, and Sy
at »=0. The critical fraction v, is marked by the dashed-dotted
line. The number of realizations is N=200; other parameters as in
Fig. 1.

net drift and dispersion of instantaneous particle positions,
respectively. The results for Ax and S, are normalized to their
values Ax, and S, at v=0. The critical fraction v at which
the effect of directed motion decreases rapidly is marked by
a dashed-dotted line. Our observations show that the channel
behavior is much more resilient to structure variations than
fluctuations of the oscillation parameters. It maintains its
ability to drive particles even with variations in its structure
of 50—-60 %. However, even relatively small fluctuations
(about 15-20 %) of S6A(r), 8B(t), and/or Sw(r) lead to fast
and abrupt disappearance of the effect.

Corresponding results are presented in Figs. 3-5. All the
figures show the ensemble- and time-averaged displacement,
Ax=(x)—x|, after 40 oscillations [subplot (a)] and standard
deviation S,=/((x—(x))?) [subplot (b)] at all of the same
parameters as Figs. 1 and 2.

Formally, a negative Ax=(x)—x|., after crossing the
dashed-dotted line depicting the critical value of each param-
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FIG. 3. Dependence of (a) the averaged displacement Ax and (b)
standard deviation S, on relative amplitude of lateral fluctuations
0A/AA. Parameters as in Fig. 2.
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FIG. 4. Dependence of (a) the averaged displacement Ax and (b)
standard deviation S, on relative amplitude of transversal fluctua-
tions 6B/AB. Parameters as in Fig. 2.

eter in Figs. 2-5 represents that point of statistical realization
losing systematic direction of motion. It can return after
some number of oscillations and move later alternatively in
negative or positive directions. However, even in such a sce-
nario, the point maintains its compactness. This manifests
itself in a finite (and almost equal to the regular case) value
of the standard deviation SX=\((x—(x))2) in subplots (b) in
each figure.

IV. CONCLUSION

We analyzed the stability of the directed transport and
molecular separation mechanism in a dynamically controlled
channel under random perturbations of its properties. The
driving mechanism in the original system is based on a com-
bination of lateral and normal harmonic channel oscillations.
At an appropriately tuned resonance relation between these
oscillations, the system exhibits very efficient directed trans-
port. The system has an advantage over traditional ratchet
systems due to its ability to produce directed transport even
in the absence of thermal noise.
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FIG. 5. Dependence of (a) the averaged displacement Ax and (b)
standard deviation S, on relative amplitude of frequency fluctua-
tions dw/w. Parameters as in Fig. 2.
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In the present paper the model is made more realistic.
Nonideality of the channel and stochastic impacts to its os-
cillations are incorporated, and the stability of directed trans-
port under random variations of all parameters is analyzed. It
is proven that the phenomenon of directed transport holds
under relatively strong fluctuations of all studied types. It is
found also that the ability of the channel to transport par-
ticles has a threshold and remains almost unchangeable up to
critical values of each of the fluctuating parameters. Upon
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reaching any of the thresholds the effect of directed motion
abruptly disappears.
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